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Abstract

This paper proposes a new framework to evaluate unconditional quantile effects (UQE) in

a data combination model. The UQE measures the effect of a marginal counterfactual change

in the unconditional distribution of a covariate on quantiles of the unconditional distribution

of a target outcome. Under rank similarity and conditional independence assumptions, we

provide a set of identification results for UQEs when the target covariate is continuously

distributed and when it is discrete, respectively. Based on these identification results, we

propose semiparametric estimators and establish their large sample properties. Applying

our method to a variant of Mincer’s earnings function, we study the counterfactual quantile

effect of actual work experience on income.
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1 Introduction

Missing data is a ubiquitous problem in empirical studies. Consider the scenario where a

researcher is interested in conducting counterfactual analysis on a target variable, but it is

entirely missing from the dataset of interest. In such circumstances, counterfactual policy

effects cannot be identified from the primary dataset alone, and therefore, external information

and/or stronger identifying assumptions are necessary. In this paper, we utilize both to achieve

identification. Specifically, we focus on the situation where the missing variable can be found in

another dataset and the information from which can be used to recover target policy parameters

in the population of interest, under a set of commonly assumed restrictions on both the data

structure and the model primitives.

To fix ideas, consider the following example. Suppose we are interested in studying the

effect of a counterfactual change in the distribution of actual labor market experience on some

distributional features of yearly earnings. Our main dataset does not record respondents’ work

history, and therefore, we cannot recover their actual labor market experience. Suppose the

variable is available from a second dataset, but it may not be a reliable source of information

on income or it may not be representative of the target population we aim to analyze. In this

case, we would benefit from combining information from both samples to identify and estimate

our parameter of interest.

Research on counterfactual policy effects under data combination is scarce. Our paper fills

this gap by proposing a new framework that accommodates such a data structure. In this paper,

we focus on one particular type of counterfactual policy effects, the unconditional quantile effect

(UQE). It measures the effect of a marginal change in the unconditional distribution of a single

covariate on the quantiles of a target outcome. We provide identification results for UQE under

various types of marginal distributional change. The key insight of our identification strategy is

that some covariates present in both datasets can be excluded from the outcome equation, which

would provide a source of exogenous variations that allows us to recover the joint distribution

of missing variables, otherwise not identified using the two samples separately.

The second contribution of the paper is to propose novel semiparametric estimators based

on these identification results. Departing from the literature on the estimation of counterfactual

quantile effects—see, e.g. Firpo et al. (2009b), Sasaki et al. (2022), etc.—which focuses primarily

on the marginal location shift (MLS) of a covariate, we provide estimators of UQE under two
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general types of counterfactual distributional changes, namely the marginal distributional shift

(MDS) and the marginal quantile shift (MQS),1 the latter of which includes MLS as a special

case. To the best of our knowledge, large sample results for these two cases are new to the

literature. We apply these results to study a variant of Mincer’s earnings function. Using data

from Integrated Public Use Microdata Sample (IPUMS) as our main data source and the Panel

Study of Income Dynamics (PSID) as the auxiliary sample, we investigate the counterfactual

effect of actual work experiences on income. The effect profiles with MDS and MQS are found

to be similar in shape.

This paper belongs to the growing literature on the (marginal) unconditional policy effect.

Since Firpo et al. (2009b) introduced the method of unconditional quantile regressions (UQR),

the study of unconditional policy effect has gained much attention. In general, this parameter

differs from the one identified by the conditional quantile regression (Koenker and Bassett Jr,

1978), where marginal effects on the conditional quantile are the locus of attention. Applied

researcher are often interested in the shifts in the quantiles of unconditional distribution of

a target outcome. For instance, one may take an interest in how wage distribution changes

in response to marginal increases in some characteristics of the labor force, such as education

level and experience. Conditional quantile regression cannot be applied to address this type of

questions, whereas UQR suits the goal.

Rothe (2012) generalizes the method of Firpo et al. (2009b), and analyzes a variety of

counterfactual policy effects. He formalizes the idea of ceteris paribus distributional change

and provides extensive results for both fixed and marginal policy shifts. Our identification

framework is closely related to his treatment of the latter type. Focusing on the special case of

quantile effects, we extend his identification results to a data combination setting and provide

novel inference theories specifically tailored to the distinct features of combined samples. For

recent development in this literature, see Firpo et al. (2018), Martinez-Iriarte and Sun (2020),

Mart́ınez-Iriarte (2021), and Sasaki et al. (2022). For a comprehensive survey on counterfactual

distributions and decomposition methods, see Fortin et al. (2011).

Our paper also builds on the econometric methods of data combination. In economics,

this strand of literature stems from the two-sample instrumental variables (TSIV) model that

was first introduced by Klevmarken (1982), Angrist and Krueger (1992), Arellano and Meghir

(1992), and is later extended by Ridder and Moffitt (2007), Inoue and Solon (2010), among

1 The precise definitions of MLS, MDS, and MQS are given in Section 3.
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others. Conceptually, the semiparametric data combination model we consider here is different

from the traditional missing data problem (Robins et al., 1994). It is more closely related to the

“verify-out-of-sample” model in Chen et al. (2008), and also to Imbens and Lancaster (1994),

Fan et al. (2014), Graham et al. (2016), Hirukawa et al. (2020), and Buchinsky et al. (2022), to

name a few.

The paper is organized as follows. In the next section, we describe the model and as-

sumptions on the data structure. In Section 3 we introduce the parameter of interest, and

then present identification results for continuously distributed and discrete target covariates,

respectively. Section 4 discusses the estimation strategy and large sample results. We apply

the method to study the income effect of real labor market experience in Section 5. Section 6

concludes.

2 Setup

The objective of our paper is to analyze the effect of a counterfactual change in the marginal

distribution of the covariate of interest, X, on the quantiles of the target outcome, Y , under data

combination. The precise definition of the counterfactual policy effect is provided in Section

3. When X is exogenous, and all the variables relevant for analysis are observed from a single

data source, counterfactual policy effects can be analyzed either directly by applying tools from

Firpo et al. (2009b) and Rothe (2012), or indirectly by recovering the structural function using

standard identification results such as Matzkin (2003) and Matzkin (2007). However, when the

variables of interest are scattered among several different data sources, we face a fundamental

identification problem: The conditional distribution of Y given X is not identified from any

single sample. In this case, existing methods do not provide an immediate solution.

Throughout this paper, we consider the scenario where our Y and X are sourced from two

different data sets. The outcome is contained in the principal or main sample, Ss = {Yi, Zi}nsi=1,

from the study population, Ps. The target covariate is missing completely from Ss. However, it

is observed in the auxiliary sample, Sa = {Xi, Zi}nai=1, from the auxiliary population, Pa, which

does not contain observations of Y .

We now formally describe our structural model. We allow variables from two populations

to be determined by different mechanisms. For the study population,

Ys = gs(Xs, Z1, εs), (1)
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Xs = hs(Z, ηs), (2)

where Ys ∈ Y ⊂ R is the potential outcome in the study population, εs ∈ E ⊂ Rdε is a vector of

unobserved heterogeneity term. Equation (1), links the target outcome, a scalar variable, Xs ∈

X ⊂ R, and a vector of exogenous variables, Z1. Here, Xs is the potential covariate of interest

in the study population, which is in turn determined by (2). We can think of (2) as the reduced

form relationship between Xs and Z, where Z ′ := (Z ′1, Z
′
2)′ ∈ Z := Z1×Z2 ⊂ Rdz includes

both the exogenous variables in the outcome equation and a vector of excluded instrument,

Z2. The vector of instrument, Z, is available in both samples, and therefore, it serves to

establish a link between two samples. The model in (1) accommodates general nonseparability

between covariates and the unobserved heterogeneity. We do not impose any parametric or

shape restriction on gs.

Variables in the auxiliary population are determined by

Ya = ga(Xa, Z1, εa) and Xa = ha(Z, ηa),

where ga and ha are generally different from gs and hs, respectively.

Let R denote the sample membership indicator. That is, Ri = 1, if i-th draw comes from the

study population, i = 1, ..., n := ns+na. Let Y := RYs+(1−R)Ya and X := RXs+(1−R)Xa.

If no variable is missing, we are able to observe (Ys, Ya, Xs, Xa). However, in our context,

only RY and (1 − R)X are observed. We then construct a pseudo-merged sample S using

the two data sources as S = {Ri, RiYi, (1 − Ri)Xi, Zi}ni=1. Let A := (R,RY, (1 − R)X,Z)

and W := (X,Z1) collect the observed variables and the covariates in the outcome equation,

respectively. Throughout the paper, we arrange the data in such a way that Ri = 1 for

i = 1, ..., ns and Ri = 0 for i = ns + 1, ..., n. The merged sample may not correspond to

any real-world population. We impose the following set of assumptions on the merged sample

so it can mimic a random sample from a pseudo population. These assumptions are largely

based on Assumption 1 in Graham et al. (2016).

Assumption 1 (Data Structure)

(a) Supp(FZ|R=1) ⊂ Supp(FZ|R=0).

(b) (i) ns/(ns + na)→ Q0; (ii) R follows a Bernoulli distribution, with E[R] = Q0.
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(c) There is a unique measurable function r(·) : Z 7→ [0, 1], such that for all z ∈ Z,

fZ|R(z|1)

fZ|R(z|0)
=

1−Q0

Q0

r(z)

1− r(z)
.

(d) (i) Q0 ∈ (ε1, 1− ε1), for some ε1 ∈ (0, 1/2); (ii) ε2 < r(z) < 1− ε2 for some ε2 ∈ (0, 1/2),

and for all z ∈ Z.

(e) (Xs|Z,R = 1)
d
= (Xa|Z,R = 0).

Assumption 1(a) is a support condition on the commonly observed variables. It ensures

that we will be able to find, for all the observations in the study sample, comparable units

in the auxiliary sample, Assumption 1(b) imposes a pseudo randomization scheme on R, and

therefore, allows us to view the merged data as a random sample from the pseudo-merged

population. Let `(·) denote the conditional likelihood ratio of Z across two population, i.e.

`(z) := fZ|R(z|1)/fZ|R(z|0). Assumption 1(c) expresses this likelihood ratio as a function of

r(·), which plays the role of the “propensity score” function of R given Z. In our context, this

is the probability that one observation belongs to the study population conditional on the value

that instrumental variables take. The first part of Assumption 1(d) indicates that ns grows

at the same order of magnitude as na. The second part of Assumption 1(d) ensures that the

pseudo-true merged population is not a degenerate one conditional on all possible values of Z.

By Assumption 1(b)–(d) and Bayes’ Law, we have r(z) = P(D = 1|Z = z), and thus, r(·) can

be viewed as the propensity score function.

Assumption 1(e) is a rank similarity condition. It requires the conditional distribution of

Xs given Z in the principal population coincide with that of Xa in the auxiliary population.

In view of the structural relation in (2), the assumption is satisfied if hs = ha and (ηs|Z,R =

1)
d
= (ηa|Z,R = 0). Assumption 1(e) is the only cross-population restriction we impose on

our data structure, which means the conditional distribution of Y given (X,Z), and therefore,

the conditional distribution of Y given Z and the marginal distribution of Z are all allowed to

differ across Ps and Pa. This assumption is weaker than Assumption 1(ii) of Graham et al.

(2016), as we do not impose a rank similarity condition on the outcome, which would imply

FYs|ZR=1(·|·) = FYa|ZR=0(·|·).
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3 Identification

In this section, we first introduce the definition of UQE. Then, we develop a set of identification

results, for the cases when X is continuously distributed, and when it is discrete, respectively.

3.1 Parameter of Interest

Our definition of the unconditional policy effect depends on the notion of a counterfactual

experiment, which is formally defined as follows,

Definition 1 (Counterfactual Experiment) Let φ := (Ũs, G̃s, Z̃, R̃, ε̃s, g̃s) : Ω 7→ K([0,

1])×D(X )×Z ×{0, 1}×E×l2(X ,Z1, E), where K([0, 1]) is the collection of all non-empty closed

subsets of the unit interval, and D(X ) denotes the space of distribution functions on X . We

say Φ is the set of counterfactual experiments, if for all φ ∈ Φ, we have (i) G̃−1
s (Us) = G̃−1

s (U ′s)

almost surely for all Us, U
′
s ∈ Ũs; (ii) (ε̃s, Z̃, R̃)

d
= (εs, Z,R); (iii) g̃s = gs, (iv) for all Us ∈ Us and

Ũs ∈ Ũs, there exists Ũ ′s ∈ Ũs and U ′s ∈ Us, respectively, such that (Ũ ′s|Z̃1, R̃ = 1)
d
= (Us|Z1, R =

1) and (Ũs|Z̃1, R̃ = 1)
d
= (U ′s|Z1, R = 1), where Us = {Ŭ ∈ U [0, 1] : (F−1

Xs|R(Ŭs|1)|Z1, R = 1)
d
=

(Xs|Z1, R = 1)}.

The definition of counterfactual experiments does not specify the counterfactural target

covariate X̃s directly. It is implicitly defined through the first two elements of φ. The first

element, Ũs, is a set of rank variables associated with the counterfactual target covariate, X̃s.

When X̃s is absolutely continuous, Ũs becomes a singleton set, but the set is generally not

degenerate when the distribution of X̃s contains a mass point. The second component, G̃s, is

the counterfactual distribution of X̃s conditional on the study population. When the target

covariate is continuously distributed, G̃s is continuous and strictly increasing, and therefore,

X̃s is uniquely determined by X̃s = G̃−1
s (Ũs), where Ũs is the only element in Ũs. However,

when the target covariate contains mass points, there is a set of counterfactual rank variables

that correspond to the same target covariate in the study population. This equivalent class is

defined by Condition (i).

Following Rothe (2012), we restrict our attention to counterfactual changes where only the

marginal distribution of Xs is changed, while the marginal distribution of Z and the depen-

dence structure between Xs and Z remain unaffected. This notion of a ceteris paribus change is

formally characterized by Conditions (ii)–(iv). Condition (ii) implies that the joint distribution
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of the observed variables (Z,R) and the latent variable εs remain unchanged across counter-

factual experiments. Under Condition (iii), the structural production function, g is also not

affected by the counterfactual change. Condition (iv) imposes a rank similarity condition. It

says the conditional rank of the counterfactural target covariate follows the same distribution

as the status quo. Due to the possibility of multiplicity of rank variables, the condition is also

framed in terms of a set equivalence condition. When we restrict attention to absolutely con-

tinuous target covariates, both Us and Ũs are singleton sets. Hence, this condition reduces to

(X̃s|Z̃1, R̃ = 1)
d
= (Xs|Z1, R = 1).

Each counterfactual experiment φ represents a modification of the underlying economic

system. It completely determines the counterfactual outcome in the study population. Yet

we remain largely agnostic as to the counterfactual change in the auxiliary population. The

definition also leaves the mechanism causing the change in the marginal distribution of the

target covariate unspecified.

Remark 1 Our definition of counterfactual experiments relaxes the rank invariance conditions

imposed by Rothe (2012). Instead, counterfactual changes in our context only need to satisfy a

rank similarity or copula invariance condition.

With the counterfactual experiments defined, we now construct the counterfactual covari-

ate vector by W̃G := (G̃−1
s (Ũs), Z̃

′
1)′. The counterfactual outcome of the study population is

then defined as Ỹs = g̃s(W̃G, ε̃s), which follows a marginal distribution, F
Ỹs
, and a conditional

distribution restricted to the principal population, F
Ỹs|R=1

. Note that the unconditional dis-

tribution is not well-defined, due to the lack of information on counterfactual changes in the

auxiliary population. Therefore, we focus exclusively on the counterfactual distribution con-

ditional on the study population in what follows. When X is discrete, a single counterfactual

experiment is mapped to a set of counterfactual outcomes, and we denote the corresponding set

of counterfactual distributions by F
Ỹs

.

In our context, the sequence of counterfactual distributions is defined in terms of the

“marginal” distribution of the potential covariate Xs in the study population, rather than

the true unconditional distribution of the observed X. Although Xs is missing from the main

dataset, and therefore, its marginal distribution cannot be directly identified from the study

population, we show in Theorem 2 that it can be recovered from the auxiliary data under the

rank similarity assumption we impose in Assumption 1.
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Figure 1: Marginal distributional shift and marginal quantile shift. The blue curve depicts
the data distribution of X. The red curve depicts a counterfactual distribution in the sequence
{Gt}t↓0, which can be induced by two equivalent policy changes.

The policy parameter we seek to identify in this paper is the pathwise derivative of coun-

terfactual distributional effect conditional on the study population. It is adapted from the

definition of the marginal partial distributional policy effect (MPPE) by Rothe (2012).

Definition 2 (Marginal Partial Distributional Policy Effect) Let Φ∗ := {φt}t≥0 ⊂ Φ

denote a sequence of counterfactual experiments, such that G̃s,t → FXs|R=1, as t ↓ 0. The

MPPE for a given functional ν : D(Y)→ R and a sequence of F̃s,t ∈ F Ỹs,t is defined by,

MPPE(ν, {Ỹs,t}t≥0) :=
∂ν(F

Ỹs,t|R=1
)

∂t

∣∣∣∣∣
t=0

= lim
t↓0

ν(F
Ỹs,t|R=1

)− ν(FYs|R=1)

t
.

We consider two specific types of counterfactual distributional changes: MDS and MQS. The

defintion of the former is due to Firpo et al. (2009b). It denotes a small perturbation in the

distribution of Xs, in the direction of G. MQS, on the other hand, considers a minuscule change

in the quantiles of Xs. This type of policy change includes the MLS, G−1
t,ls(u) := F−1

Xs|R(u|1) + t,

as a special case.

Definition 3 (Counterfactual Policy Distributions)

• Marginal Distributional Shift (MDS): Gt,p(x) := FXs|R(x|1) + t(G(x)− FXs|R(x|1)).

• Marginal Quantile Shift (MQS): G−1
t,q (u) := F−1

Xs|R(u|1) + t(G−1(u)− F−1
Xs|R(u|1)).

9



Remark 2 Figure 1 illustrates how the rates of change between the two types of counterfactu-

als are related. Under the condition that FXs|R=1 is compactly supported with strictly positive

density on X , MQS in a user-specified direction, q(x), can be approximated in the limit by MDS

with G(x) = FXs|R(x|1)− fXs|R(x|1)q(x).

Turning to the case of quantiles, the quantile operator for a particular τ is defined by, ντ (FYs|R=1) :=

F−1
Ys|R=1(τ). With the understanding that MPPE associated with a counterfactual experiment is

generally a set when the X is discretely valued, we suppress the index with respect to {Ỹs,t}t≥0

for notational convenience, and denote the MPPE with MDS, MPPE(ντ , {Ỹs,t}t≥0), and MPPE

with MQS, MPPE(ντ , {Ỹs,t}t≥0), by UQEp(τ,G) and UQEq(τ,G), respectively. Here, and in

what follows, the qualifier “unconditional” in UQE should be understood as conditional on (or

relative to) the study population.

3.2 Identification of FYs|XsZ1R=1

If there is no missing variable, the joint distribution of (Y,X,Z) is directly identifiable from

a random sample. Under data combination, however, only the “marginal” conditional dis-

tributions: FYs|ZR=1 and FXa|ZR=0, can still be separately identified from the two samples,

respectively. The conditional distribution, FYs|XsZ1R=1, is generally not identifiable without

further cross-population assumptions.

Instead of seeking identification of the entire conditional distribution, FYs|XsZ1R=1 (·|·, ·, 1),

we demonstrate in Sections 3.3 and 3.4 that UQE, and MPPE in general, can be identified using

information on a finite set of points of Ys. Choice of the set depends on research interest. For

instance, it can include only the median, the quartiles of Ys, etc. This flexibility allows us to

obtain identification under much milder restrictions on the pseudo-merged population.

Identification is achieved through the excluded instrument variables, Z2. To ease notational

burden, define Λ(x, z1) := FYs|XsZ1R(qτ |x, z1, 1) for all x ∈ X and z1 ∈ Z1.

Assumption 2 εs ⊥⊥ Z2|Xs, Z1, R = 1.

Assumption 2 implies that Z2 can be excluded from the outcome equation, and therefore, can

be used as a source of exogenous variation to proxy for the missing covariate in the study

population. Note that Λ is generally not identified without an exogenous instrument Z2. We

illustrate this point with a linear normal model in Example 1.
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Under Assumptions 1 and 2, the following moment-matching equation holds, for all z ∈ Z,

E [1(Y ≤ qτ )|Z,R = 1]− E [Λ(W )|Z,R = 0] = 0. (3)

Equivalently, Λ can be identified based on a likelihood-ratio-weighting equation,

E
[
R1(Y ≤ qτ )− (1−R)Λ(W )

r(Z)

1− r(Z)

∣∣∣∣Z] = 0. (4)

The next assumption is about the global identification of Λ.

Assumption 3 Λ is the unique solution to (3) or (4) almost surely.

Assumption 3 is a high level condition. It is implied by a bounded completeness condition on

the auxiliary population.2 Note that Λ is globally identified as long as E[Λ(W )− Λ̃(W )|Z,R =

0] = 0 implies Λ = Λ̃, which follows immediately if Λ is measurable with respect to W , and

W is bounded complete for Z, relative to the auxiliary population.3 Although Canay et al.

(2013) show that the completeness condition is untestable against general alternatives, we use

two examples to show that the assumption is reasonable in some special cases.

The completeness condition implicitly imposes some constraints on the support of the ex-

cluded instrument. Whenever X is continuously distributed, Z2 is generally required to be

continuous. In Example 1, we show that when both X and Z2 are continuous, Assumption 3

holds when the structural errors follow a joint normal distribution, which is a commonly-adopted

assumption in empirical practices. However, our method does not apply if the instrument has

finite support or otherwise violates the bounded completeness condition, the latter of which is

likely to occur if the strength of the instrument is weak.

On the other hand, when X is discretely valued, we show via Example 2 that Assumption

3 can be satisfied with a discrete instrument. The key requirement is a rank condition on

conditional probability matrices of Xa given Z. When the set of Z1 is empty, we can uses Cragg

and Donald (1996) or Robin and Smith (2000) to test the rank condition.

In Section 4, we base our estimation and inference on parametric identification of Λ. In this

case, we assume that FYs|XsZ1R(qτ |x, z1, 1) = Λ(x, z1;β0), for some β0 ∈ θβ ⊂ Rdβ . In Lemma

A.1, we provide a set of sufficient conditions which allow us to establish a global parametric

identification condition analogous to Assumption 3.

2 For two random element U and V , we say U is bounded complete for V , relative to a subpopulation S = s, if
for all bounded measurable functions δ(·), E[δ(U)|V, S = s] = 0 implies δ(U) ≡ 0 almost surely.

3 Bounded completeness is weaker than the commonly adopted completeness condition appearing in Newey and
Powell (2003) and Fan et al. (2014). We refer readers to Hoeffding et al. (1977), Blundell et al. (2007), and
Lehmann (1986) for detailed discussions.
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Lemma 1 FYs|XsZ1R(qτ |·, ·, 1) is point identified under Assumptions 1–3.

Lemma 1 establishes the nonparametric identification of Λ. The proof for the parametric

case follows along exactly the same line so we omit it here. In the next example, we verify the

identification assumptions in a conditional normal model.

Example 1 (Conditional Normal Model) Let the structural equations of the study popula-

tion be given by

Ys = gs(Xs, Z1) + εs,

Xs = hs(Z) + ηs,

where εs and ηs are jointly normally distributed. Specifically, for positive-valued functions ψy(·)

and ψx(·), we have

(εs, ηs)|Z,R = 1 ∼ N

0,

ψy(Z1) 0

0 ψx(Z1)


 .

Then, Λ(w) = Φ(ψy(z1)−1/2(qτ − gs(w))), where Φ(·) denotes the CDF of standard normal

distribution. Suppose the reduced-form of X given Z in the auxiliary population is Xa = ha(Z)+

ηa, Assumption 1(e) is satisfied if hs = ha = h, and (ηs|Z,R = 1)
d
= (ηa|Z,R = 0). Assumption

2 holds if Z2 ⊥⊥ εs|Xs, Z1, R = 1. Assume, in addition that, conditional on z1, Supp(FZ2)

contains an open set and that h(z1, ·) maps open sets of z2 into open sets. Assumption 3 then

follows by Theorem 2.2 in Newey and Powell (2003).

Turning to the linear case, let gs(w) = γs1x+ γ′s2z1, h(z) = δ′1z1 + δ′2z2, ψy = ψx = 1, ηs ⊥⊥

(εs, Z2), and therefore, E [1(Y ≤ qτ )|Z,R = 1] = Φ((qτ−(γs1δ
′
1+γs2)′Z1−γs1δ′2Z2)/(1+γ2

s1)1/2).

As a consequence, (γs1 , γ
′
s2)′ are uniquely determined by (3) or (4), if and only if δ2 6= 0.

Example 2 (Discrete Covariates) Suppose Xs, Xa, and Z2 are all discretely valued. Assume

that Supp(FXj |Z1=z1) = {x1, ..., xl} and Supp(FZ2|Z1=z1) = {z1, ..., zk}, for j = s, a and for all

z1 ∈ Supp(FZ1). Let P ju,t(z1, r) = Prob(Xj = xu|Z2 = zt, Z1 = z1, R = r) for j = s, a and

r = 0, 1. Assumption 1(e) holds if for all u ∈ {1, 2, ..., l} and t ∈ {1, 2, ..., k}, P su,t(Z1, 1) =

P au,t(Z1, 0) with probability 1. Moreover, let P j(·, ·) denote the matrix of probabilities where the

(u, t)-th entry is equal to P ju,t(·, ·). Then by Theorem 2.4 in Newey and Powell (2003), bounded

completeness, and hence, Assumption 3, hold if rank(P a(Z1, 0)) = l with probability 1.
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3.3 Identification with Continuously Distributed X

In this section, we establish the identification of UQEq and UQEp when the distribution of X

is absolutely continuous. Before stating the main result, we need some additional identifying

assumptions.

Assumption 4

(a) (i) εs ⊥⊥ Us|Z1, R = 1; (ii) there exists a t0 sufficiently close to 0, such that for all t ≤ t0

and φt ∈ Φ∗, ε̃s,t ⊥⊥ Ũs,t|Z̃1,t, R̃t = 1.

(b) Supp(G) ⊂ Supp(FX|ZR(·|Z, 1)) almost surely.

Assumption 5 FY |R=1 is continuously differentiable in an open neighborhood of qτ with strictly

positive density function fY |R=1.

Assumption 4(a)(i) imposes that conditional on Z1, structural error εs is independent of

the rank variable Us in the study population. This is much weaker than the commonly as-

sumed strict independence condition that Xs is independent of εs unconditionally. Conditional

exogeneity has also been imposed by Firpo et al. (2009b), Rothe (2012), and Chernozhukov,

Fernández-Val and Melly (2013), among others. Assumption 4(a)(ii) requires the conditional

independence condition of part (a) to hold when counterfactual experiments get sufficiently

close to the status quo. Under the rank invariance condition imposed by Rothe (2012), it

is automatically implied by Assumption 4(a)(i). Assumption 4(b) ensures that the conditional

distribution of Ys given W is identified over the support of W . Assumption 5 imposes a smooth-

ness condition on the distribution of target outcome, which implies that F−1
Y |R=1 is Hadamard

differentiable at FY |R=1, tangentially to the set of functions that are continuous at qτ .

The main theoretical result of this section is given as follows.

Theorem 2 Suppose that Assumptions 1–5 hold, and that the distribution of X is absolutely

continuous with respect to the Lebesgue measure, both UQEp(τ,G) and UQEq(τ,G) are identi-

fied.

(a) For UQEq, we have

UQEq(τ,G) = − 1

fYs|R(qτ |1)(1−Q0)
E [(1−R)`(Z)Λx(X,Z1)gq(X)] ,

where gq(x) := G−1(FXs|R(x|1))− x, and FXs|R(x|1) = 1
1−Q0

E [(1−R)`(Z)1(X ≤ x)].
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(b) Suppose in addition that X is compact, and FXs|R=1 is continuously differentiable on X

with strictly positive density function fXs|R=1. Then we have,

UQEp(τ,G) = − 1

fYs|R(qτ |1)(1−Q0)
E [(1−R)`(Z)Λx(X,Z1)gp(X)] ,

where gp(x) := −G(x)−FXs|R(x|1)

fXs|R(x|1) , and fXs|R(x|1) = 1
1−Q0

∂E [(1−R)`(Z)1(X ≤ x)] /∂x.

Remark 3 The compactness condition on X is assumed to ensure the existence of pathwise

derivative of the inverse map. It can be relaxed by imposing a boundary condition on Λx.

Specifically, we may assume that Λx vanishes when x 6∈ [FXs|R=1(q1) + ε, FXs|R=1(q2) − ε], for

0 < q1 < q2 < 1 and some ε > 0.

3.4 Identification with Discrete Covariate

Let the support of X be {x1, . . . , xl}. When X is discrete, MQS is not well-defined and we con-

sider MDS only, with counterfactual experiments defined through a fixed discrete distribution,

G. As indicated by Example 2, results in this section hold when Z2 are both continuously and

discretely valued.

Assumption 6

(a) (i) εs ⊥⊥ Us|Z1, R = 1, for all Us ∈ Us; (ii) there exists a t0 sufficiently close to 0, such

that for all t ≤ t0 and φt ∈ Φ∗, εs,t ⊥⊥ Ũs,t|Z̃1,t, R̃t = 1, for all Ũs,t ∈ Ũs,t.

(b) Supp(G) ⊂ Supp(FXs|R=1).

(c) For all Us ∈ Us, FUs|Z1R(us|z1, 1) is continuously differentiable in us, for all z1 ∈ Z1.

Assumption 6(a) is the counterpart of Assumption 4(a) for discrete covariates. Since the

rank variables are no longer uniquely pinned down by strictly increasing quantile functions, we

strengthen Assumption 4(a) so that conditional independence holds for all the rank variables

in the equivalent class. With this identifying assumption in hand, we are ready to present the

following identification result. For j = 1, . . . , l, let the period bound generating function be

defined by

hqτ (xj , xj−1, z1) := −
(Λ(xj−1, z1)− Λ(xj , z1)) · (G(xj−1)− FXs|R(xj−1|1))

fYs|R(qτ |1)
.

Theorem 3 Suppose that Assumptions 1–3, 5, and 6 hold, UQEp(τ,G) is partially identified,

with
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UQEp(τ,G) ∈

 ∑
j∈J+

hqτ (xj , xj−1, z†1,j) +
∑
j∈J−

hqτ (xj , xj−1, z∗1,j),

∑
j∈J+

hqτ (xj , xj−1, z∗1,j) +
∑
j∈J−

hqτ (xj , xj−1, z†1,j)

 ,
where J + := {j ∈ {1, . . . , l} : G(xj−1) ≤ FXs|R(xj−1|1)} (J − is analogously defined), z∗1,j :=

arg supz1∈Z1
(Λ(xj−1, z1)−Λ(xj , z1)), z†1,j := arg infz1∈Z1(Λ(xj−1, z1)−Λ(xj , z1)), and FXs|R(xj |1) =

E[ 1−R
1−Q0

`(Z)1(X ≤ xj)], for j ∈ {1, . . . , l}.

Theorem 3 indicates that UQEp is generally partially identified with bounds generated by hqτ .

In the special case when Λ(x, z1) is constant in z1, the identified set of UQEp reduces to a

singleton.

If X is binary and Gt,p(x) = 1{0 ≤ x < 1}(FXs|R(0|1) − t) + 1{x ≥ 1}, hqτ reduces to

− (Λ(1, z1)− Λ(0, z1)) /fY |R(qτ |1). In such circumstance, Theorem 3 corresponds to the two-

sample generalization of Theorem 5 in Rothe (2012), when ν in that paper takes on the quantile

functional.

4 Estimation and Inference

In this section, we discuss estimation and inference for our two-sample UQE. First, we describe

an estimation procedure for UQEq and UQEp as identified in Theorem 2. We then show that

our estimator is consistent and asymptotically normal in Theorem 5.4

4.1 Estimation Procedure

Following the discussion in Section 3, we first propose an estimator of the conditional probability,

Λ. Here, we restrict our attention to the parametric setting where Λ is indexed by a vector of

parameter, β. We use a moment-matching method based on (4) to estimate β. The estimation

of β consists of four-steps. In the first step, we estimate qτ by solving

q̂τ := arg min
q∈Y

En[R(τ − 1(Y ≤ q)) · (Y − q)]. (5)

The next three steps follow closely the Auxilliary-to-Study Tilting (AST) method proposed by

Graham et al. (2016). Using the AST estimator, β and the propensity score can be jointly

4 Here we focus on the scenario where the distribution of X is absolutely continuous. When X is discrete,
the problem features partially identified parameters defined by the intersection bounds. Chernozhukov, Lee
and Rosen (2013) provide an extensive treatment of this topic. We omit discussion here and refer readers to
Appendix D in Rothe (2012) for a detailed discussion on how to apply their method.
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estimated from moment restrictions in (4). To implement the estimator, we first estimate the

propensity score, r(z). Towards this end, we assume that the propensity score takes a parametric

form, i.e. r(z) = L(k(z)′γ), where L(·) is any link function that satisfies Assumption 7(e). Using

L(·), γ̂ can be obtained by solving the following problem,

γ̂ := arg max
γ∈Θγ

En
[
R log(L(k(Z)′γ)) + (1−R) log(1− L(k(Z)′γ))

]
. (6)

The AST estimator augments the conditional maximum likelihood estimator γ̂ with tilting

parameters. The resulting estimator of β is more efficient than the one based on γ̂ alone. Let

t(z) be a vector of known functions of z with a constant term as the first element. Denote

the tilting parameters associated with the auxiliary data and the study sample, by λa and λs,

respectively. They are estimated by solving,

En

[(
1−R

1− L(k(Z)′γ̂ + t(Z)′λ̂a)
− 1

)
L(k(Z)′γ̂)t(Z)

]
= 0, (7)

En

[(
R

L(k(Z)′γ̂ + t(Z)′λ̂s)
− 1

)
L(k(Z)′γ̂)t(Z)

]
= 0. (8)

Using λ̂s and λ̂a, we compute study and auxiliary sample tilts, which are defined as follows

π̂si :=
L(k(Zi)

′γ̂)

L(k(Zi)′γ̂ + t(Zi)′λ̂s)
, π̂ai :=

L(k(Zi)
′γ̂)

1− L(k(Zi)′γ̂ + t(Zi)′λ̂a)
. (9)

Also let e(z) be a dβ-dimensional vector of known functions of z, and g(a; q̂τ , γ̂, λ̂s, λ̂a, β) :=

(π̂sr1(y ≤ q̂τ )− π̂a(1− r)Λ(w;β))e(z). Now, in the last step, β can be estimated by

β̂ := arg inf
β∈Θβ

L̂n(β), (10)

where L̂n(β) :=
∥∥∥En[g(A; q̂τ , γ̂, λ̂s, λ̂a, β)]

∥∥∥2

Ωn
and ‖x‖2Ωn := x′Ωnx, for a sequence of positive

definite weighting matrices Ωn.

Using these quantities, we can obtain Λx(W ; β̂) := ∂Λ(W ; β̂)/∂x, and ̂̀(z) := na
ns
· L(k(z)′γ̂+t(z)′λ̂s)

1−L(k(z)′γ̂+t(z)′λ̂a)
.

Throughout this section, we assume that the counterfactual distribution G is known. In prac-

tice, if G is not known, it may be estimated from an independent sample; see e.g. Rothe

(2010). Using the above estimates and F̂Xs|R=1(·) := Ena [̂̀(z)1(X ≤ ·)], where Ena [X] denotes

n−1
a

∑n
i=ns+1Xi, ĝq can be obtained as the plug-in estimator. For gp, we need an estimator

for fX|R=1(·). Our identification relies on a compact support condition, and it is well known

that the Prazen-Rosenblatt density estimator is not valid near the boundary of support. To

overcome this challenge, we introduce trimming.5 For a kernel Kx with compact support, and

5 Trimming is widely adopted in the literature; see e.g. Härdle and Stoker (1989), Powell et al. (1989) among
others. This specific trimming function is inspired by Guerre et al. (2000) and Li et al. (2002). As an alternative,
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some bandwidth bx, we let

f̂X|R(x|1) := Ena
[̂̀(Z)IbxKbx (X − x)

]
,

where Kbx(·) := b−1
x Kx(·/bx). Ibx is a trimming indicator, which equals one for x ∈ {[x +

ρxbx/2, x̄ − ρxbx/2]}, where x, x̄, and ρx are the lower and upper bound, of X , and the di-

ameter of Supp(Kx), respectively. The density, fY |R, can also be estimated using a kernel

density estimator. Specifically, for any kernel function Ky(·) that satisfies Assumption 8(b), let

f̂Y |R(y|1) := Ens [Kby (Yi − y)], where Ens [X] := n−1
s

∑ns
i=1Xi and Kby(y) := b−1

y Ky(y/by).

Now, plugging in the estimators of nuisance quantities, UQEj(τ,G) can thus be estimated

by,

ÛQEj(τ,G) := − 1

f̂Y R(q̂τ |1)
Ena [̂̀(Z)Λx(W ; β̂)ĝj(X)], j = p, q. (11)

We summarize the estimation procedure in the following algorithm.

Algorithm 1 (Plug-in Estimator for ÛQE)

1. Compute the empirical quantile estimator q̂τ by solving (5).

2. Compute the conditional maximum likelihood estimator γ̂ by solving (6).

3. Solve (7) and (8) to get λ̂j, and use them to compute π̂j, for j = s, a, following (9).

4. Use the above quantities to compute β̂, by solving (10).

5. Compute Λx(·; β̂), ̂̀(·), F̂Xs|R=1(·), f̂Xs|R=1(·). Using these quantities to compute ĝj, for

j = p, q.

6. For j = p, q, compute the plug-in estimator ÛQEj following (11).

4.2 Large Sample Results

In this section, we present inference results for the estimators introduced in the previous section.

We first establish large sample properties of β̂, for which purpose, some additional regularity

conditions are in order.

Assumption 7

we can use a local polynomial density estimator that adjusts for the boundary bias adaptively; see Cattaneo
et al. (2020) for details.
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(a) (i){(Ri, RiYi, (1−Ri)Xi, Zi)}ni=1 are i.i.d.; (ii) let θ := (γ, λs, λa, β) ∈ Θ := Θβ×Θ2
λ×Θβ,

then Θ is compact, and θ0 lies in the interior of Θ.

(b) FY |ZR=1(y|z) is absolutely continuous and differentiable in y ∈ Y0 for all z ∈ Z, where

Y0 is a compact subset of Y, and

sup
(y,z)∈Y0 Z

|fY |ZR(y|z, 1)| ≤ c1 <∞.

(c) (i) Λ(w;β) is twice continuously differentiable in β with uniformly bounded derivatives,

for all w ∈ W; (ii) 0 ≤ infw,β Λ(w;β), supw,β Λ(w;β) ≤ 1; (iii) Λx(·;β) is continuously

differentiable in β, and supw,β |Λx(w;β)| ≤ c2 <∞.

(d) There exists a symmetric, non-random matrix Ω, such that ||Ωn − Ω|| = Op(δω,n), where

δω,n = o(1), and that c−1
3 ≤ λmin(Ω) ≤ λmax(Ω) ≤ c3.

(e) There is a unique γ0 ∈ Θγ, and known function L(·) such that (i)

`(z) =
1−Q0

Q0
· L(k(z)′γ0)

1− L(k(z)′γ0)
.

(ii) L(·) is strictly increasing, twice continuously differentiable, with bounded first and

second order derivatives; (ii) limx→−∞ L(x) = 0 and limx→∞ L(x) = 1; (iii) 0 < c4 <

L(k(z)′γ + t(z)′λj) ≤ c5 < 1 for all (γ, λj) ∈ Θγ ×Θλ, j = s, a, and z ∈ Z.

(f) E[||j(Z)||4] <∞, where j = k, t, e.

Assumption 7(a) is standard in the microeconometric literature. Assumption 7(b) requires

the conditional density fY |ZR(·|·, 1) be bounded uniformly for all (y, z) ∈ Y0Z. Assumption

7(c) imposes mild smoothness conditions on the parametric function Λ(·, ·; ·), requiring it to be

bounded between the unit interval, thus behaving like a distribution function. Assumption 7(d)

states that Ωn is consistent for Ω, which is positive definite. Assumption 7(e) implies that the

true “propensity score” is known up to finite dimensional γ0. It also specifies smoothness and

boundedness conditions on the parametric propensity score. Finally, due to the estimation of

qτ , we impose a finite fourth moment condition in Assumption 7(f), which is stronger than the

usual square-integrability condition.

Lemma 4 Suppose that Assumptions 1–5 and Assumption 7 hold, then (i) β̂
p→ β0; further-

more, (ii) suppose that the Jacobian, MΩ, as defined in (A.5) in the Online Appendix, is in-
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vertible, then
√
n(β̂ − β0) =

1√
n

n∑
i=1

ψβ(Ai; θ0, qτ ) + op(1),

where ψβ(A; θ0, qτ ) is given by (A.8) in the Online Appendix, and (iii)

√
n(β̂ − β0)

d→ N(0,Σβ),

where Σβ := E[ψβ(A; θ0, qτ )ψβ(A; θ0, qτ )′].

Lemma 4 shows that the parameters of FYs|XsZR=1 are consistently estimated by β̂. Further-

more, it admits an asymptotic linear representation with influence function given by ψβ(A; θ0, qτ ),

which plays a key role in establishing the large sample properties of UQE. Towards this ends,

we need the following set of assumptions.

Assumption 8

(a) (i) FY |R=1(·) is absolutely continuous and differentiable over y ∈ Y; (ii) fY |R=1(·) is

uniformly continuous; (iii) the density fY |R=1(y) is strictly bounded away from 0, three

times continuously differentiable in y with uniformly bounded derivatives for y in Y0, such

that qτ ∈ Y0.

(b) The kernel function Ky(·) is symmetric, continuous, bounded, with a compact support,

and such that (i)
∫
Ky(y)dy = 1; (ii)

∫
yKy(y)dy = 0.

(c) by → 0, log(n)n−1b−1
y → 0, and nb5y → c6 <∞.

(d) (i) X is compact; (ii) G is continuously differentiable on X with strictly positive density.

Assumption 8(a) strengthens Assumption 5 and imposes stronger smoothness conditions on the

distribution of Ys. Assumption 8(b) states several regularity conditions on kernel functions,

which is standard in the literature. Assumption 8(c) specifies admissible rate for the bandwidth

parameter. We can choose by = O(n−κs ), for κ ∈ [1/5, 1/2). Assumption 8(d) imposes support

and smoothness conditions for the counterfactual target covariate.

Asymptotic properties of ÛQE are formally characterized in the next theorem.

Theorem 5 Under Assumptions 1–5, 7, and 8, (i) the following linear expansions hold,

ÛQEq(τ,G)− UQEq(τ,G) =
1

n

n∑
i=1

ψq +Bq(τ,G, by) + op(n
−1/2).
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Suppose in addition that Assumption B.1 holds, (ii) then we have

ÛQEp(τ,G)− UQEp(τ,G) =
1

n

n∑
i=1

ψp +Bp(τ,G, by) + op(n
−1/2),

where, ψj, j = p, q, is defined in Appendix B, Bj(qτ , G, by) :=
b2yf
′′
Y |R(qτ |1)dj(θ0,G)

2f2
Y |R(qτ |1)

·
∫
y2Ky(y)dy,

and dj(θ0, G) := 1
1−Q0

E[(1−R)`(Z)Λx(X,Z1;β0)gj(X)], for j = p, q.

(iii) Therefore,√
nby(ÛQEj(τ,G)− UQEj(τ,G)−Bj(qτ , G, by))

d→ N(0,Σj),

where, Σj :=
d2j (θ0,G)

f3
Y |R(qτ |1)Q0

∫
K2
y (y)dy, for j = p, q.

From the linear expansions in Theorem 5, we conclude that UQE converges at a rate that is

slower than root-n. This result is mainly driven by the nonparametric estimation of the density

fY |R=1, and therefore, the estimator is nonparametric in essence. Moreover, the asymptotic

expansion includes an asymptotic bias term, B(τ,G, by). If we assume, as in Firpo et al.

(2009a), nb5y → 0 or κ < 1/5, the bias vanishes asymptotically.

Remark 4 Estimators for the asymptotic variance of UQEp(τ,G) and UQEq(τ,G) can be

constructed using their empirical counterparts. Specifically, let

Σ̂j :=
d̂j,n(θ̂, G)2

f̂3
Y |R(q̂τ |1)En[R]

∫
K2
y (y)dy,

where d̂j,n(θ̂, G) := Ena [̂̀(Z)Λx(W ; β̂)ĝj(X)]. Under a suitable rate condition on by, consistency

of Σ̂j follows directly from the first two parts of Theorem 5. To achieve better finite-sample

performance, we can add the root-n terms of the influence functions to the variance estimator,

based on which, we propose the following improved variance estimator,

Σ̂j,imp := by En[ψ̂j(A; θ̂, q̂τ , by)
2]. (12)

In the above definition, ψ̂j(a; θ̂, q̂τ , by) is a plug-in estimator of the influence function, ψj(A; θ0, qτ , by),

for j = p, q. A detailed description of the construction of ψ̂ can be found in the Online Appendix

C.

Remark 5 Theorem 5 implies that tests of the unconditional quantile effect converges at a

non-parametric rate in general. Nonetheless, for the null of zero, positive, and negative effects,

we can still construct tests that have power against departures of the null at the parametric rate.

For example, to test the null: H0 : UQEj(τ,G) = 0, it is equivalent to test H ′0 : dj(β0, G) = 0,

as UQEj(τ,G) = 0 ⇔ dj(β0, G) = 0, for j = p, q. From Theorem 5, we know that d̂j,n(β̂, G)
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converges at the parametric rate. Moreover, we have

√
nV̂
−1/2
d,j (d̂j,n(θ̂, G)− dj(θ0, G))

d→ N(0, 1), (13)

where V̂d,j is an estimator of Vd,j := E[ψd,j(A; θ0, qτ )2], with ψd,j, j = p, q, defined in Appendix

B. The result in (13) can be used to test H ′0, applying standard testing procedures.

5 Empirical Illustration

We apply our identification and estimation methods to a variant of the Mincer’s regression. Our

main goal here is to demonstrate the bias from using potential instead of actual labor experience

in human capital earnings models.

Identifying the causal relationship between earnings and human capital accumulation has

been a focus of labor economic studies for decades. Traditionally, Mincer’s regression has been

widely used to quantify the link between labor wage, education and labor market experience.

Most datasets do not provide respondents’ actual work histories. Therefore, many re-

searchers choose to proxy the variable with potential work experience. The potential experience

measure is usually calculated by subtracting years of schooling plus some constant (typically 6

years) from age. Despite the popularity of this practice, many labor economists believe that

the return to actual experience tends to be biased when we employ the potential experience as

proxy; see e.g. Regan and Oaxaca (2009). One of their main arguments is that any lapse in

labor force participation would be implicitly assumed away when potential experience instead

of the actual one is used. There is little reason to believe that the return to employed experience

is the same as that of the unemployed period. Hence, it is still preferable to use the actual labor

experience.

We use the 1970 wave of IPUMS as our main sample. The data is a 1-in-10,000 national

random sample of the population. The outcome of interest is the natural log of yearly earnings.

The target covariate, actual work experience, is missing from IPUMS. To apply the procedure

described in Section 4, we need a dataset where the actual work experience is available. For

that purpose, we use the 1972 wave of PSID as cleaned by Hirukawa et al. (2020). Detailed

work histories are available in PSID. Therefore, it allows us to recover the actual labor market

experience. However, running analysis directly with PSID may not be ideal due to the fact

that it is not nationally representative. Our method is able to address this issue by combining

information from both samples.
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To estimate FYs|XsZ1R=1, we consider the following specification,

P(log(Income) ≤ y) = Λ(β0 + β1educ+ β2black + β3south

+ β4married+ β5experr + β6exper
2
r) (14)

where experr stands for individual’s actual or realized work experience, educ denotes the high-

est grade completed by the respondent, black,married, and south are dummy variables which

take one if the person is black, married, and lives in the south, respectively. The actual

work experience serves as our Xs. It enters (14) with linear and quadratic terms. We let

(educ, black, south,married) be the set of included instruments Z1, and the potential experi-

ence, experp, be the excluded instrument Z2.

Table 1: Summary statistics

Variable Mean St. Dev. Min 25th Pctl. Median 75th Pctl. Max

Data Source A: The IPUMS Sample (1970s)

Income 7,923.98 6,218.37 50 4,050 7,050 10,050 50,000

Log(Income) 8.64 0.97 3.91 8.31 8.86 9.22 10.82

Age 38.29 13.88 17 26 37 50 65

Education 11.43 2.71 5 10 12 13 17

Black 0.07 0.25 0 0 0 0 1

South 0.26 0.44 0 0 0 1 1

Married 0.75 0.43 0 0 1 1 1

Potential Experience 20.86 14.7 0 8 20 33 53

Data Source B: The PSID Sample

Income 8,966.52 5,905.47 50 5,069 8,000 11,359 70,000

Log(Income) 8.88 0.74 3.91 8.53 8.99 9.34 11.16

Age 37.8 12.37 17 26 37 47 65

Education 12.14 3.06 5 11 12 16 17

Black 0.27 0.44 0 0 0 1 1

South 0.41 0.49 0 0 0 1 1

Married 0.89 0.31 0 1 1 1 1

Potential Experience 19.65 13.42 0 7 18 30 53

Actual Experience 18.87 12.23 0 8 18 28 56

Data Source C: The IPUMS Sample (1980s)

Potential Experience 18.99 14.49 0 6 16 31 53

Notes: Summary statistics for IPUMS and PSID. The top panel uses male subsample (aged between
17 to 65) from the 1970 wave of IPUMS with a sample size of 5,807. The middle panel uses the male
subsample (aged between 17 to 65) from the 1972 wave of PSID with a sample size of 2,339. The bottom
panel uses male subsample (aged between 17 to 65) from the 1980 wave of IPUMS with a sample size of
533,517.

Mincer et al. (1974) derives the relationship between schooling, labor market experience and

earnings by means of an accounting identity model. We assume that realized labor experience,
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rather than potential experience as constructed by econometricians, determines post-school in-

vestment, and therefore, observed earnings. This belief is embodied in Assumption 2, which

requires that earnings are independent with potential experience, conditional on actual expe-

rience and education. This restriction holds if the mechanism that governs the discrepancy

between potential and actual experience is unrelated to the wage determination process. Note

that it in principle rules out cases where individuals leave labor market in response to wage rate

fluctuations.

Visual check of the actual-experience-specific age-income profiles can serve as a preliminary

test of the exclusion restriction. There are many reasons why such a parsimonious model is

often refuted by data. See Heckman et al. (2006), Lemieux (2006), and the references therein

for a detailed discussion of the empirics. Nevertheless, we believe that our modification of the

benchmark Mincer regression suffices for an illustrative purpose.

Due to the relatively large support, we treat experience as a continuous variable. We assume

that, given potential experience and the set of controls, actual labor experience follows the same

distribution in the two samples, which implies that Assumption 1(e) holds. This assumption is

reasonable in our context since we the two surveys were taken around the same time in history.

Additionally, we assume the errors of structural equations follow a joint normal distribution.

Therefore, Assumption 3 follows by Example 1.

We provide estimation results when Λ(·) takes either the logistic link or the probit link. To

implement the AST estimator, we choose j(Z) = (Z ′1, Z
′
2)′, for j = k, t, e. The density of Ys

is estimated using by = n−0.01
s bn,0, where bn,0 := 1.06 min{σ(Ys), interquartile(Ys)}n−0.2

1 is the

usual “rule-of-thumb” bandwidth.

Table 1 reports the descriptive statistics for the two samples. Following the standard practice

in labor economics, we use only the data on men aged between 17 and 65 when the surveys

are taken. To ensure that Assumption 1(a) holds, we further trim the IPUMS sample to match

the sample bounds observed in the PSID data set. This leaves us with a sample of ns = 5, 807

respondents for IPUMS and na = 2, 339 for PSID.There are considerable differences between the

two datasets. Individuals who are black, married and/or lives in the south are over-represented

in PSID compared to the nationally representative IPUMS. On average, an individual in PSID

has 0.78 years more potential experience than actual experience.

For UQE with MDS and MQS, we take the smoothed empirical distribution of experp from

the 1980 wave of IPUMS 1-in-100 sample (trimmed to match the support of the PSID sample)
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Table 2: Estimation results

Quantile Level 0.25 0.5 0.75 0.25 0.5 0.75

Logit Link Probit Link

MDS

UQE2s(τ) -0.2297 -0.0612 -0.0296 -0.2304 -0.0619 -0.0299

(0.0587) (0.0125) (0.0054) (0.0576) (0.0124) (0.0055)

H0 : UQE2s = 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

MQS

UQE2s(τ) -0.2159 -0.0611 -0.0305 -0.2159 -0.0615 -0.0308

(0.0779) (0.0164) (0.0063) (0.0778) (0.0164) (0.0063)

H0 : UQE2s = 0 0.0043 0.0002 0.0000 0.0043 0.0002 0.0000

MLS

UQE2s(τ) 0.0956 0.0241 0.0135 0.0957 0.0243 0.0143

(0.0154) (0.0020) (0.0011) (0.0151) (0.0020) (0.0011)

H0 : UQE2s = 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Notes: In each panel, the first two rows report point estimates and standard error using our
two sample estimator. The last row of each panel reports the p-value associated with the Wald
test of zero effect.

as the target counterfactual distribution. The policy question we would like to answer with this

counterfactual is as follows: What is the unconditional quantile effect if the distribution of labor

market experience shifts marginally towards that is observed in the 1980s. Due to the large

sample size of the counterfactual sample (n = 533, 517), we can ignore the sampling variation

and treat the target distribution as known. As shown in Table 1, we find that less-experienced

workers tend to have even fewer years of experience in the counterfactual scenario than in the

status quo, and the opposite is true for workers closer to the right tail of the distribution.

We report estimation results in Table 2 and Figure 2. A few remarks are in order. First,

our estimates suggest that the counterfactual effect of a marginal shift in the distribution of

actual experience is heterogeneous across income groups. The effect is larger in magnitude for

the lower-income groups as expected. When MDS and MQS are considered, the quantile effects

are uniformly negative and the shapes of the effect curves are similar. The marginal shift could

decrease the (log) earning by anything between 0.03 and 0.23 across income quantiles. For

reference, when the logistic link is assumed, the marginal effect of MDS amounts to a reduction

of 20.5% in annual earnings for individuals the first quartile, 5.9% at the median, and 2.9% at

the third quartile, respectively. The MLS estimates are of different signs from MDS and MQS.

The marginal upward shift in the actual experience would increase a median worker’s income

by 2.4%.
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(a) MDS

(b) MQS

(c) MLS

Figure 2: Unconditional quantile effect of actual experience on log(Earnings). The top panel: Results for
UQE with MDS. The middle panel: Results for UQE with MQS. The bottom panel: Results for UQE with MLS.
All three plots contain the UQE of potential experience based on IPUMS (two-dash lines), the UQE of actual
experience based on PSID (dashed lines), the two-sample UQE (solid lines), and the two-sided 95% confidence
intervals based on the improved variance estimator (shaded area).

Next, we consider the bias caused by using potential experience in lieu of the actual ex-

perience. We note that, one-sample UQE estimates based on IPUMS tend to be smaller in

magnitude at lower income quantiles than that based on the combined data. Eventually, the

two estimators converge at higher income levels.6

6 Our analysis is local to the direction of counterfactual change, and therefore, does not allow the result to be
extrapolated globally. For the same reason, the comparison between UQE2s and UQEpsid is not meaningful.
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6 Concluding Remarks

In this paper, we propose a framework to identify and estimate unconditional quantile policy

effect under data combination. We establish the identification of UQE under two main con-

ditions: a rank similarity assumption and a conditional independence assumption, based on

which, we provide estimators for the identified UQE and derive their large sample properties.

Our current approach can be extended in the following directions. First, although we have

restricted our attention to the quantile effect throughout this paper, our results can be easily

extended to other statistical functionals such as mean, interquartile, and inequality measures.

It would be interesting to see how the identification requirements change with respect to the

functional we adopt. Second, we have focused exclusively on the pointwise identification and

inference. While extension to uniform results seem straightforward, it comes at a cost of stronger

cross-sample restrictions. Under such assumptions, conditional quantile regression is likely

feasible. Comparing conditional and unconditional quantile effects, as in Firpo et al. (2009b),

under our two-sample structure, would also be an interesting direction for future research.
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Appendix

A Proofs of Lemmas and Theorems in Section 3

Proof of Lemma 1: We provide proof for the nonparametric identification here. The proof for

the parametric case follows along exactly the same line and is omitted. We shall show (3) first,

E[1(Y ≤ qτ )|Z,R = 1] = E[E[1(Ys ≤ qτ )|Xs, Z,R = 1]|Z,R = 1]

= E[E[1(Ys ≤ qτ )|Xs, Z1, R = 1]|Z,R = 1]

= E[Λ(Xs, Z1)|Z,R = 1]

= E[Λ(Xa, Z1)|Z,R = 0]

= E[Λ(W )|Z,R = 0],

where the second equality is by Assumption 2, and the fourth line follows by Assumption 1(e).

Likewise for (4),

E[R1(Y ≤ qτ )|Z] = E[1(Y ≤ qτ )|Z,R = 1] · P[R = 1|Z]

= E[Λ(W )|Z,R = 0] · r(Z)

= E[(1−R)Λ(W )|Z] · r(Z)

1− r(Z)
.

Thus, Lemma 1 follows immediately from (3) (or (4)) and Assumption 3. �

Lemma A.1 Suppose (i) Λ(w;β) is measurable with respect to w for all β ∈ Θβ; (ii) W is

bounded complete for Z, relative to the auxiliary population; (iii) Λ(w;β) is differentiable with

respect to β; and (iv) ∂Λ(·;β)/∂β is uniformly bounded and ∂Λ(·;β)/∂β 6≡ 0 for all β ∈ Θβ.

Then, under Assumptions 1 and 2, β0 can be uniquely identified from (3) or (4).

Proof of Lemma A.1: From Lemma 1, we know that β0 solves (3) or (4). It remains

to show uniqueness. Suppose, there is β1, β1 6= β0, that solves (3), then, E[Λ(W ;β1) −

Λ(W ;β0)|Z,R = 0] = 0. By MVT, this and (iii) implies that E[∂Λ(W ;β)/∂β|
β=β̃
|Z,R =

0](β1− β0) = 0, for some value between β0 and β1. Condition (i), (ii), and (iv) then imply that

E[∂Λ(W ;β)/∂β|
β=β̃
|Z,R = 0] 6≡ 0, which leads to a contradiction. �

Proof of Theorem 2: We shall first prove the identification result for a fixed counterfactual

distribution. Next, we take the derivative of the counterfactual experiments with respect to
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t. The result of Theorem 2 then follows by the fact that Hadamard derivative operator of the

quantile functional is linear. For any t ≤ t0, fix εt ∈ Φ∗, and we have that

F
Ỹs,t|R(qτ |1)

=

∫
P (gs(X̃s,t, Z̃1,t, ε̃s,t) ≤ qτ |X̃s,t = x, Z̃1,t = z1, R̃t = 1)dF

X̃s,tZ̃1,t|R̃t(x, z1|1)

=

∫
P (gs(G

−1
t (Ũs,t), Z̃1,t, ε̃s,t) ≤ qτ |Ũs,t = u, Z̃1,t = z1, R̃t = 1)dF

Ũs,tZ̃1,t|R̃t(u, z1|1)

=

∫
P (gs(G

−1
t (u), Z1, εs) ≤ qτ |Z1 = z1, R = 1)dFUsZ1|R(u, z1|1)

=

∫
P (gs(G

−1
t (u), Z1, εs) ≤ qτ |Us = u, Z1 = z1, R = 1)dFUsZ1|R(u, z1|1)

=

∫
P (gs(Xs, Z1, εs) ≤ qτ |Xs = G−1

t (u), Z1 = z1, R = 1)dFUsZ1|R(u, z1|1)

=

∫
P (gs(Xs, Z1, εs) ≤ qτ |Xs = G−1

t (u), Z1 = z1, R = 1)dFUsZ|R(u, z|1)

=

∫
P (gs(Xs, Z1, εs) ≤ qτ |Xs = G−1

t (FXs(x)), Z1 = z1, R = 1)dFXsZ|R(x, z|1)

=

∫
FYs|XsZ1R(qτ |G−1

t (FXs|R(x|1)), Z1, 1)dFXsZ|R(x, z|1)

=

∫
FYs|XsZ1R(qτ |G−1

t (FXs|R(x|1)), Z1, 1)
r(z)(1−Q0)

Q0(1− r(z))
dFXZ|R(x, z|0)

= E
[
FYs|XsZ1R(qτ |G−1

t (FXs|R(X|1)), Z1, 1)
r(Z)(1−Q0)

Q0(1− r(Z))
|R = 0

]
=

1

1−Q0
E
[
(1−R)`(Z) · FYs|XsZ1R(qτ |G−1

t (FX|R(X|1)), Z1, 1)
]
,

where the second line follows by the definition of F
Ỹs,t

(qτ ), the third one comes from the defini-

tion of Ũs,t and a change of variable from x to u, the fourth equality follows by the construction

of Φ∗ and Assumptions 4(a) and (b), the fifth line is again by Assumption 4(a), the eighth one

follows by the definition of Us and standard change-of-variable argument, the tenth line is by

Assumptions 1(a)–(c) and Bayes’ Law.

To obtain the marginal distributional effect, we take derivative of FGt
Ỹs|R

(qτ |1) with respect

to t and evaluate it at t = 0. For the marginal distributional shift,

∂F
Ỹs,t|R(qτ |1)

∂t

∣∣∣∣∣
t=0

=

∫
∂FYs|XsZ1R(qτ |x, z1, 1)

∂x
·
∂G−1

t,p (FXs|R(x|1))

∂t

∣∣∣∣∣
t=0

· r(z)(1−Q0)

Q0(1− r(z))
dFW |R(w|0)

=
1

1−Q0
E

[
(1−R)`(Z) · ∂Λ(X,Z1)

∂x
·
∂G−1

t,p (FXs|R(x|1))

∂t
|t=0

]
.

Observe that
∂G−1

t,p(·)
∂t |t=0 is the pathwise derivative of the inverse map H 7→ H−1 at FXs|R=1

in the direction of G − FXs|R=1. By Lemma 3.9.23 in Van Der Vaart and Wellner (1996), the
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inverse map is Hadamard differentiable under the conditions specified in the theorem, with the

derivative map given by,

φ 7→ −(φ/h) ◦H−1,

where h is the first-order derivative of H. Let φ(·) = G(·) − FXs|R=1(·) and H = FXs|R=1, it

follows immediately that, for all u ∈ [0, 1],

∂G−1
t,p (u)

∂t

∣∣∣∣∣
t=0

= −
G(F−1

Xs|R=1(u))− u)

fXs|R=1(F−1
Xs|R=1(u))

,

and hence, for all x ∈ X ,

∂G−1
t,p (FXs|R(x|1))

∂t

∣∣∣∣∣
t=0

=
FXs|R(x|1)−G(x)

fXs|R=1(x)
.

Analogously, for marginal quantile shift,

∂F
Ỹs,t|R(qτ |1)

∂t

∣∣∣∣∣
t=0

=

∫
∂FYs|XsZ1R(qτ |x, z1, 1)

∂x
·
∂G−1

t,q (FXs|R(x|1))

∂t

∣∣∣∣∣
t=0

· r(z)(1−Q0)

Q0(1− r(z))
dFW |R(w|0)

=
1

1−Q0
E
[
(1−R)`(Z) · ∂Λ(X,Z1)

∂x
· (G−1(FX|R=1(X))−X)

]
,

where the second equality follows from Lemma 1 and the definition of G−1
t,q (·).

To identify FXs|R=1, we exploit the following fact

FXs|R=1(·) = E[1(X ≤ ·)|R = 1]

=

∫
Z

∫
X

1(x ≤ ·)dFX|ZR(x|z, 1)dFZ|R(z|1)

=

∫
Z

∫
X

1(x ≤ ·) · (1−Q0)r(z)

Q0(1− r(z))
dFX|ZR(x|z, 0)dFZ|R(z|0)

= E
[

(1−Q0)r(Z)

Q0(1− r(Z))
1(X ≤ ·)|R = 0

]
=

1

1−Q0
E [(1−R)`(Z)1(X ≤ ·)] ,

where the third line is due to Assumption 1 and Bayes’ Law.

Theorem 2 then follows from Assumption 5, qτ = F−1
Ys|R=1(τ), and the fact that the Hadamard

derivative of the quantile functional is ν ′τ (φ) = − φ

fYs|R=1
◦ F−1

Ys|R=1(τ), which is linear in φ. �

Proof of Theorem 3: First, we fix Us ∈ Us and φt ∈ Φ∗, for t ≤ t0. By construction, there exists

Ũs,t ∈ Ũs,t such that (Ũs,t|Z1, R = 1)
d
= (Us|Z1, R = 1). Now we rewrite F

Ỹs,t|R=1
∈ F

Ỹs,t|R=1
in

terms of Us and Z1. Let x0 = −∞, and we have that

F
Ỹs,t|R=1

(qτ )

29



=

∫
P (gs(X̃s,t, Z̃1,t, ε̃s,t) ≤ qτ |X̃t = x, Z̃1,t = z1, R̃t = 1)dF

X̃s,tZ̃1,t|R̃t(x, z1|1)

=
l∑

j=1

∫
P (gs(X̃s,t, Z̃1,t, ε̃s,t) ≤ qτ |X̃s,t = xj , Z̃1,t = z1, R̃t = 1)

· P (Ũs,t ∈ (Gt,p(x
j−1), Gt,p(x

j)]|Z̃1,t = z1, R̃t = 1)dF
Z̃1,t|R̃t(z1|1)

=

l∑
j=1

∫
P (gs(Xs, Z1, εs) ≤ qτ |X = xj , Z1 = z1, R = 1)

· P (Us ∈ (Gt,p(x
j−1), Gt,p(x

j)]|Z1 = z1, R = 1)dFZ1|R(z1|1)

=
l∑

j=1

∫
FYs|XsZ1R(qτ |xj , z1, 1) · (P (Us ∈ (FXs|R(xj−1|1), FXs|R(xj |1)]|Z1 = z1, R = 1)

+ P (Us ∈ (Gt,p(x
j−1), Gt,p(x

j)]|Z1 = z1, R = 1)

− P (Us ∈ (FXs|R(xj−1|1), FXs|R(xj |1)]|Z1 = z1, R = 1))dFZ1|R(z1|1)

=FYs|R(qτ |1)−
l∑

j=1

∫
Λ(xj , z1)(P (Us ∈ (Gt,p(x

j−1), Gt,p(x
j)]|Z1 = z1, R = 1)

− P (Us ∈ (FXs|R(xj−1|1), FXs|R(xj |1)]|Z1 = z1, R = 1))dFZ1|R(z1|1). (15)

For the second term on the right hand side of the last equality, we have

P (Us ∈ (Gt,p(x
j−1), Gt,p(x

j)] | Z1 = z1, R = 1)

− P (Us ∈ (FXs|R(xj−1|1), FXs|R(xj |1)] | Z1 = z1, R = 1))

=(FUs|Z1R(Gt,p(x
j) | z1, 1)− FUs|Z1R(FXs|R(xj |1) | z1, 1)

− (FUs|Z1R(Gt,p(x
j−1) | z1, 1))− FUs|Z1R(FXs|R(xj−1|1) | z1, 1))

=(Gt,p(x
j)− FXs|R(xj |1)) · fUs|Z1R(ũj,t | z1, 1)

− (Gt,p(x
j−1)− FXs|R(xj−1|1)) · fUs|Z1R(ũj−1,t | z1, 1)

=t · (G(xj)− FXs|R(xj |1)) · fUs|Z1R(ũj,t | z1, 1)

− t · (G(xj−1)− FXs|R(xj−1|1)) · fUs|Z1R(ũj−1,t | z1, 1),

where ũj,t is some value between Gt,p(x
j) and FXs|R(xj |1), and is potentially dependent on z1.

The last equality is due to MVT. Using the above result, (15) becomes

FYs|R(qτ |1)−
l∑

j=1

t ·
∫

Λ(xj , z1) · ((G(xj)− FXs|R(xj |1)) · fUs|Z1R(ũj,t | z1, 1)

− (G(xj−1)− FXs|R(xj−1|1)) · fUs|Z1R(ũj−1,t | z1, 1))dFZ1|R(z1|1)

= FYs|R(qτ |1)−
l∑

j=2

t ·
∫

(Λ(xj−1, z1)− Λ(xj , z1))
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· (G(xj−1)− FXs|R(xj−1|1)) · fUs|Z1R(ũj−1,t | z1, 1)dFZ1|R(z1|1),

where the equality follows by rearranging terms, the fact that G(x0) = FXs|R(x0|1) = 0, and

that G(xl) = FXs|R(xl|1) = 1. The pathwise derivative can thus be calculated as

lim
t↓0

F
Ỹs,t|R=1

(qτ )− FYs|R(qτ |1)

t

=

l∑
j=2

∫
(Λ(xj−1, z1)− Λ(xj , z1))

· (G(xj−1)− FXs|R(xj−1|1))dFZ1|UsR(z1 | FXs|R(xj−1|1), 1),

where the second line is due to the dominated convergence theorem, Bayes’s Law, and the fact

that Us|R = 1 follows the standard uniform distribution. Therefore, by Lemma 1 and the

linearity of ν ′τ (·),

UQEp(τ,G) ∈

 inf
Us∈Us

l∑
j=2

∫
hqτ (xj , xj−1, z1)dFZ1|UsR(z1 | FXs|R(xj−1|1), 1),

sup
Us∈Us

l∑
j=2

∫
hqτ (xj , xj−1, z1)dFZ1|UsR(z1 | FXs|R(xj−1|1), 1)

 .
Using a similar argument as in the proof of Theorem 5 in Rothe (2012), we can show that

for j = 1, . . . , l, {FZ1|UsR(z1|Us = FXs|R(xj |1), R = 1) : Us ∈ Us} is the set of all multivari-

ate distribution functions with support equal to Supp(FZ1|R=1). To see this, note that for

j = 1, . . . , l, FZ1|UsR(·|Us = FXs|R(xj |1), R = 1) = CUs1 (FXs|R(xj |1), FZ1|R(·|1)), where the con-

ditional copula, CUs , is defined by CUs(FUs|R(u|1), FZ1|R(z1|1)) := FUsZ1|R(u, z1|1), and CUs1 is

the partial derivative of CUs with respect to the first argument. By the construction of Φ, the

set of CUs(·, ·) for Us ∈ Us is equivalent to the identified set of the conditional copula of Xs

and Z1 given R = 1, CXs(·, ·), where CXs(FXs|R(x|1), FZ1|R(z1|1)) := FXsZ1|R(x, z|1), for all

x ∈ {x1, . . . , xl}. Then, the desired result follows by applying an extension of Theorem 2.2.7 in

Nelsen (2007).

Without loss of generality, we focus on the upper bound for now. By appropriately choosing

Dirac measures with unit masses on {z∗j }j∈J+ and {z†j}j∈J− , It is straightforward to show that,

sup
Us∈Us

l∑
j=2

∫
hqτ (xj , xj−1, z1)dFZ1|UsR(z1 | FXs|R(xj−1|1), 1)

=
∑
j∈J+

hqτ (xj , xj−1, z∗1,j) +
∑
j∈J−

hqτ (xj , xj−1, z†1,j). (16)

The right hand side of (16) is identified under the support condition in Assumption 1(a). The
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proof for the lower bound follows by an analogous argument. �

B Asymptotic Linear Representation of UQE Estimators

We specify additional regularity conditions in Theorem 5 and provide linear expansions for

ÛQEp and ÛQEq in this section, the proofs of which are contained in the Online Appendix.

Assumption B.1

(a) fX|ZR=0 is uniformly bounded, twice continuously differentiable with uniformly bounded

first and second order derivatives on X Z.

(b) (i) Kx(·) is a second order symmetric kernel function; (ii) the support of Kx is continuous,

bounded, with compact support, Kx(·), and such that
∫
Kx(x)dx = 1,

∫
xKx(x)dx =

0,
∫
x2Kx(x)dx > 0, and

∫
K2
x(x)dx <∞.

(c) (i) nbx/log(n)→∞ and (ii) nb4x → 0.

For j = p, q, the asymptotic linear representation of ÛQEj is given as follows,

ÛQEj(τ,G)− UQEj(τ,G)−Bj(τ, d, by)

=
1

n

n∑
i=1

{
ψfy ,j(Ai; θ0, qτ , G)− 1

fY |R(qτ |1)
ψd,j(Ai; θ0, qτ , G)

}
+ op(n

−1/2b−1/2
y + b2y),

=
1

n

n∑
i=1

ψj(Ai; θ0, qτ , by) + op(n
−1/2b−1/2

y + b2y), (17)

where

ψfy ,j(a; θ0, qτ , G) :=
dj(θ0, G)

f2
Y |R(qτ |1)

r

Q0

(
Kby(y − qτ )

−E[Kby(Y − qτ )|R = 1]−
(1(y ≤ qτ )− τ)f ′Y |R(qτ |1)

fY |R(qτ |1)

)
, (18)

ψd,j(a; θ0, qτ , G) :=
(
Mθ,j(θ0)′ψθ(a; θ0, qτ )

+ψg,j(a; θ0, G) +
(1− r)`(z)Λx(w;β0)gj(x)

1−Q0
− rdj(θ0, G)

Q0

)
. (19)

In the above equation, ψθ(a; θ0, qτ ) are defined in the Supplementary Appendix,

Mθ,j(θ0) :=E

1−R
Q0

Λx(W ;β0) (∇L,θ0(Z) · gj(X) +Gj,θ0(X))

L0(Z)

1− L0(Z)
Λx,β(W ;β0)gj(X)


 , (20)
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∇L,θ(z) :=



L′s(z)(1− La(z)) + Ls(z)L
′
a(z)

(1− La(z))2
· k(z)

L′s(Z)

1− La(Z)
· t(Z)

Ls(Z)L′a(Z)

(1− La(Z))2
· t(Z)

 , (21)

for Lj(z) := L(k(z)′γ + t(z)′λj), and L′j(z) := L′(k(z)′γ + t(z)′λj), j = s, a. In addition,

Gq,θ0(x) :=G
′
(G−1(FX|R(x|1)))−1 · E

[
1−R
Q0

· ∇L,θ0(Z)1(X ≤ x)

]
, (22)

Gp,θ0(x) := E
[

1−R
Q0
∇L,θ0(Z)1(X ≤ x)

]/
fX|R(x|1)

+ (G(x)− FX|R=1(x)) E
[

1−R
Q0
∇L,θ0(Z)IbxKbx(X − x)

]/
fX|R(x|1)2,

ψg,q(a; θ0, G) :=E

[
1−R
1−Q0

· `(Z)Λx(W ;β0)

G′
(
G−1(FX|R(X|1))

)
·
(

(1− r)`(z)1(x ≤ X)

1−Q0
−
rFX|R(X|1)

Q0

)]
, (23)

ψg,p(a; θ0, G) :=E
[

(1−R)`(Z)Λx(W ;β0)

(1−Q0)fX|R(X|1)
·
(

(1− r)`(z)1(x ≤ X)

1−Q0
− FX|R(X|1)

)]
+

(1− r)`(z)
1−Q0

π(x)− E
[

(1−R)`(Z)

1−Q0
π(X)

]
− r −Q0

Q0
· E
[

(1−R)`(Z)Λx(W ;β0)

1−Q0
· G(X)

fX|R(X|1)

]
, (24)

π(x) :=E [Λx(W ;β0)|X = x,R = 1]
G(x)− FX|R(x|1)

fX|R(x|1)
. (25)
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